Partners:

Objectives

WP Leader: Jonatan Rösgren WP Deputy: Matthias Stark

Develop methods, systems and processes allowing a continuous optimized <u>performance</u> of the power plant <u>throughout</u> its lifetime

Structure

Building blocks for lifetime performance

Engine control optimization

Engine offline parametrization tool

LIFETIME PERFORMANCE CONTROL

Development of a fully flexible lube oil injection system

Development of an advanced real time tribosystem performance monitoring system

Structure: Subprojects, outline of the work performed

Sub-project 5.1: Engine control optimization

Optimized control study, algorithm development, simulation, testing

Sub-project 5.2: Offline engine control parametrization tool

 Parametrization study, concept, prototype tool development, prototyping, testing

Development environment, 5.1, 5.2:

Global engine/system control

Physical model based engine control

Hybrid diesel-electric control

Cylinder-wise combustion control

Injector trimming

NOX estimation

Final results & Achievements (5.1 & 5.2)

5.1 Engine control optimization

Knock margin control

- Control optimization methods for optimal lifecycle performance demonstrated on 20CRDF engine; physical model control, injector trimming, NOX estimation, knock margin control
- Controller for hybrid-diesel electric propulsion system – successful predictive controller for hybrid concept

5.2 Offline engine control parametrization tool

- Offline parametrization tool demonstrator testing done on engine at Aalto and ready for demonstrator testing at VEBIC
- Engine control map parameters optimized in each operation point with a DoE approach to be used as offline tuning throughout engine lifetime

Hybrid electric MPC control

CONCLUSIONS

- Global system engine control; Predictive control for hybrid-electric propulsion, physical model based engine control, engine control map parametrization tool
- Cylinder-wise combustion control: Injector trimming, NOx estimation, cylinder pressure accuracy, knock margin control
- Successful demonstration of optimized control methods throughout engine lifetime with potential to minimize divergence (5%) from "as-new" performance

Structure: Subprojects, Activities: 5.3, 5,4

Sub-project 5.3:

Development and simulation of an adaptive lubrication system

Sub-project 5.4:

Development of an advanced real time tribo-system performance monitoring system

Structure

Building blocks for lifetime performance

Monitoring technology development

Lubrication system development

ADAPTIVE
LUBRICATION
SYSTEM
DEVELOPMENT

Simulation tool development

Testing and validation

Partners:

Key-steps towards the development of a new lubrication system prototype

- a) Lubrication system concept study to nominate a suitable lubrication strategy
- b) Simulation model development to optimize lubricant jet and injector performance
- c) Final prototype injector design
- d) Prototype injector testing and performance optimization
- e) Full-scale prototype injector performance validation

Lubrication system simulation tool development and validation

Spray characteristics

- Spray morphology
- Spray impingement

Injector characteristics

- Rail pressure
- Injection timing

> Establishment of a sound testing environment for lubrication system validation

Tribo - system monitoring development and validation

Wear- and scuffing sensor prototype development

- Sensitivity investigations
- Component optimization

In-line viscosity sensor prototype development

- Signal optimization
- Robust sensor design
- > Establishment of a sound testing environment for monitoring system validation

Final results & Achievements (5.3 & 5.4)

Full-scale engine test

Tribosystem monitoring

Lubrication system

> Tribo-system performance validation

Final results & Achievements (5.3 & 5.4)

Full-scale engine test

> Tribosystem monitoring system validation

Final results & Achievements (5.3 & 5.4)

Full-scale engine test

Lubrication system performance validation

➤ Lubrication system performance comparison

Final results & Achievements (5.3 & 5.4)

5.3 Development and simulation of a fully flexible lubrication system

- Successful design, development and validation of a new lubrication strategy
- Development of a valuable simulation tool to predict lubrication system performance

<u>5.4</u> Development of an advanced tribo-system performance monitoring approach

- Identification of relevant tribo-system parameters to actively control lubrication performance
- Successful prototype testing of real time tribo-system performance monitoring equipment

"Lizzy" Lubrication system performance simulator

Full-scale tribo-system performance validation

Conclusions (5.3 & 5.4)

- The new common rail type lubrication strategy demonstrates enhanced functionality compared to the standard lubrication system
- Shaping the lubricant jet pattern by adjusting relevant lubrication system
 parameters inhibits lubricant atomization and therewith supports enhanced
 lubricant admission
- The new lubrication strategy leads to a more than satisfying lubrication performance and reveals a potential saving of up to 15% of total lube oil consumption related to total injected mass